Vida Verde

VIDA VERDE

Desarrollan un sistema que clasifica tipos de bosques mediante la inteligencia artificial

Gracias a este sistema, será posible disponer de mapas actualizados anualmente que permitirán estudiar los efectos de la crisis climática y de la actividad humana sobre estos bosques.

El estudio recoge el valor de los bosques como reguladores del clima y de la diversidad.pixabay

Una investigación desarrollada por la Universidad de Málaga (sur de España) creó una herramienta capaz de clasificar los bosques mediante el uso de la inteligencia artificial (IA) a través de imágenes de satélite.

Los investigadores aluden a la importancia de la observación de la Tierra basada en imágenes de satélite, ya que proporciona una base tecnológica que posibilita la creación de aplicaciones de vanguardia en torno a la crisis climática, la agricultura de precisión, el urbanismo inteligente, la degradación del suelo o los cambios en la cubierta terrestre.

“El riesgo de degradación del medioambiente ha crecido significativamente durante las últimas décadas", señala en un comunicado la científica del Centro Temático Europeo de la Universidad de Málaga (ETC-UMA) Virginia García.

En este sentido, el seguimiento del uso del suelo "desempeña un papel fundamental en la consecución de varios objetivos estratégicos a escala mundial, como la conservación de la biodiversidad, la reducción de las emisiones de carbono y el calentamiento global, la planificación urbana y la agricultura”, explica García.

Particularmente, el estudio recoge el valor de los bosques como reguladores del clima y de la diversidad, al igual que la relevancia que adquiere su protección y restauración, reflejada en políticas internacionales y europeas como la reciente Ley Europea de Restauración de bosques, el Pacto Verde Europeo o los Objetivos de Sostenibilidad de Naciones Unidas.

Aunque los diferentes gobiernos elaboran catálogos detallados de los diferentes usos del suelo e inventarios forestales, estos se actualizan tras largos periodos de tiempo, lo que no permite realizar un seguimiento continuo.

“Con este trabajo nos planteamos el reto de desarrollar una metodología que facilite la clasificación de la cubierta terrestre en zonas extensas como la cuenca mediterránea, además de crear mapas de bosques a nivel de especies", precisa el investigador Antonio Manuel Burgueño, otro de los autores del proyecto.

En este contexto, es necesario "analizar gran cantidad de imágenes de satélite”, y este extenso volumen de imágenes sin procesar requiere “el uso de soluciones basadas en el 'big data'”, añade Burgueño.

Para poder clasificar los diferentes usos del suelo y con el objetivo de contemplar los cambios que se producen en los bosques a lo largo del año (fenómeno conocido como 'fenología') dependiendo del tipo de especies arbóreas, se han analizado las tres estaciones.

Asimismo, a través de técnicas de inteligencia artificial, se ha creado un modelo que, con base en "anotaciones de zonas de bosque para las que se conoce su tipología, se puede predecir el tipo de bosque en zonas para las que no se dispone de información".

"De esta forma, usando datos de un porcentaje pequeño del territorio total de la cuenca mediterránea, se ha podido hacer la clasificación de los bosques de la cuenca completa, que incluye diecinueve países”, precisa otro de los autores de este trabajo, el profesor del Departamento de Lenguajes y Ciencias de la Computación Ismael Navas.

El proceso de búsqueda de datos de campo para entrenar los modelos de IA contó con la participación de voluntarios de dieciséis países.

Por una parte, participaron investigadores que han cedido sus datos de campo y, por otra, a través de una 'Datathon' (encuentro de investigadores) en la que 46 participantes recolectaron datos de usos de suelo de sus países de origen.

Gracias a este sistema, será posible disponer de mapas actualizados anualmente que permitirán estudiar los efectos de la crisis climática y de la actividad humana sobre estos bosques, la efectividad de las políticas forestales o la capacidad de recuperación de estos tras los incendios.

Ello “facilitaría a las administraciones la toma de decisiones basadas en datos para la conservación y restauración de nuestros espacios naturales”, añaden los autores.